Sponsor

Recent

NOS ADENTRAMOS EN LOS SECRETOS CUÁNTICOS DE LA LUZ.

¿Qué es un fotón?

Publicado por Eugenio M. Fernández Aguilar
Físico, escritor y divulgador científico
Creado:22.01.2024 | 07:00 - Actualizado:22.01.2024 | 07:25

La luz y la radiación electromagnética son elementos omnipresentes en nuestra vida cotidiana, pues desempeñan un papel esencial en el funcionamiento del universo y en nuestra experiencia diaria. Desde la luz del sol que ilumina nuestro día hasta las ondas electromagnéticas que hacen posible la comunicación inalámbrica, estos fenómenos fascinantes han sido objeto de estudio y admiración a lo largo de la historia. En este contexto, surge la pregunta central que nos llevará a explorar un aspecto fundamental de la naturaleza de la luz: "¿Qué es un fotón?"

Es imposible imaginar un fotón porque pertenece al mundo cuántico. Créditos: Eugenio Fernández - Designer.Eugenio Fernández - Designer

En este viaje de exploración científica, nos sumergiremos en el fascinante mundo de los fotones, las partículas que constituyen la esencia misma de la luz. ¿Cómo se originan? ¿Cómo interactúan con la materia? ¿Qué papel desempeñan en los fenómenos cuánticos? Estas son algunas de las preguntas que desentrañaremos a medida que desvelamos el misterio detrás de la pregunta fundamental: "¿Qué es un fotón?" Nos adentramos en el fascinante reino de la luz.

La naturaleza ondulatoria de de la luz

La luz presenta una dualidad intrigante: se manifiesta tanto como onda como partícula. Este fenómeno, conocido como la dualidad onda-partícula, fue un hito en la comprensión de la luz y una revelación clave en la teoría cuántica.

En un principio, la luz fue conceptualizada como una onda, una perturbación en un campo electromagnético que se propaga a través del espacio. Este enfoque ondulatorio explicaba fenómenos como la reflexión y la refracción, y fue una herramienta valiosa para comprender la propagación de la luz.

En un principio, la luz fue conceptualizada como una onda, una perturbación en un campo electromagnético que se propaga a través del espacio.. Créditos: wacomkawacomka

En el siglo XVII, la concepción de la luz como onda comenzó a tomar forma con las contribuciones de científicos como Christiaan Huygens. En 1678, Huygens propuso una teoría coherente que describía la luz como ondas esféricas, proporcionando explicaciones para fenómenos como la reflexión y la refracción. Este enfoque sentó las bases para la comprensión de la luz como un fenómeno ondulatorio. Simultáneamente, Robert Hooke también exploraba la idea de que la luz era una forma de onda en 1672, aunque su propuesta no fue tan exhaustiva como la de Huygens. Ambos científicos contribuyeron al desarrollo de la teoría ondulatoria de la luz en el siglo XVII.

En el siglo XIX, Thomas Young desempeñó un papel fundamental al realizar experimentos que respaldaron la teoría ondulatoria de la luz. Su famoso experimento de la doble rendija en 1801 demostró la interferencia de las ondas de luz, brindando evidencia experimental sólida de la naturaleza ondulatoria de la luz.

Experimento de la doble rendija. Créditos: shutterstock, grayjaygrayjay

Otro contribuyente clave fue Augustin-Jean Fresnel, quien en el mismo periodo explicó fenómenos como la difracción y la polarización. Sus aportes, tanto matemáticos como experimentales, fortalecieron la comprensión de la luz como onda y proporcionaron una base sólida para futuras investigaciones en este ámbito.

Estos científicos del pasado colaboraron en la construcción de la base teórica que conceptualizó la luz como una onda. Este paradigma evolucionaría más tarde con la incorporación de la dualidad onda-partícula en la teoría cuántica del siglo XX.

Mucho más que una onda: naturaleza cuántica de la luz

Albert Einstein, en 1905, propuso que la luz estaba compuesta por partículas cuantificadas de energía, a las que posteriormente se les llamó fotones. Esta teoría cuántica de la luz no invalidaba su naturaleza ondulatoria, sino que ofrecía una perspectiva complementaria. Así, la dualidad onda-partícula se convirtió en un pilar fundamental de la física cuántica.

La propuesta de Einstein vino en un artículo sobre el efecto fotoeléctrico, un trabajo por el que ganaría el premio Nobel en 1921. Sin embargo el cuanto de luz aún no había sido bautizado como fotón. Pero la idea ya estaba en el ámbito científico.

Einstein fue el que introdujo el concepto de fotón con su artículo sobre el efecto fotoeléctrico. Créditos: Eugenio Fernández - DesignerEugenio Fernández - Designer

Max Planck, unos años antes, en 1900, había introducido el concepto de cuantización de la energía al estudiar la radiación del cuerpo negro. Este concepto, aunque inicialmente propuesto para resolver problemas específicos, sentó las bases para la idea de que la energía estaba cuantizada en unidades discretas, una noción esencial para la teoría cuántica.

En 1923, Arthur Compton realizó experimentos de dispersión de rayos X que proporcionaron evidencia experimental adicional sobre la naturaleza corpuscular de la luz, apoyando la idea de Einstein de los fotones.

Niels Bohr, con su modelo cuántico del átomo, incorporó la idea del fotón al explicar las transiciones electrónicas y la emisión de luz en átomos. Esta integración del fotón en la teoría atómica fortaleció su estatus como una entidad fundamental en la física cuántica.

¿Cuándo se usó por primera vez la palabra "fotón"?

Desde que Einstein propuso la idea en 1905, el término se hizo esperar. La palabra "fotón" fue introducida por primera vez por el físico teórico Gilbert N. Lewis en 1926. Lewis acuñó la palabra "fotón" para describir la partícula cuantizada de luz en el marco de la teoría cuántica. Su propósito era proporcionar un término específico para referirse a las unidades discretas de energía asociadas con la luz. El artículo vio la luz, nunca mejor dicho, el 18 de diciembre de 1926. Desde entonces usamos la palabra fotón.

La palabra "fotón" fue introducida por primera vez por el físico teórico Gilbert N. Lewis en 1926.

El concepto del fotón y su nombre se volvieron esenciales en la comprensión de la dualidad onda-partícula de la luz y su papel en la teoría cuántica. Desde entonces, el término "fotón" ha sido ampliamente adoptado y se ha convertido en una parte fundamental del vocabulario en física cuántica y teoría cuántica de campos.

Pero... ¡qué es un fotón!

El fotón es una partícula elemental de la luz y desempeña un papel crucial en la teoría cuántica de campos. Su definición y características específicas nos sumergen en una realidad donde las reglas familiares de la física clásica dan paso a fenómenos asombrosos y a menudo desconcertantes. La mejor forma de responder a la pregunta ¿Qué es un fotón? es estudiando dos características de los fotones. Nos referimos a su naturaleza cuántica y a la energía que transporta.

En primer lugar, el fotón debe entenderse como partícula cuántica. Esto significa que se rige por el principio de incertidumbre de Heisenberg, lo que implica que la determinación precisa de su posición y velocidad simultáneas es una tarea imposible. Este rasgo distintivo ilustra la dualidad onda-partícula del fotón, donde, a pesar de comportarse como partícula puntual, también exhibe patrones de interferencia típicos de las ondas.

Por otra parte, veamos algo sobre la energía del fotón, pues esto es fundamental para su comprensión. Se relaciona directamente con la frecuencia de la luz. La ecuación de Planck, E = hf, nos revela que la energía (E) del fotón es proporcional a la constante de Planck (h) y a la frecuencia (f) de la luz. Esta relación es crucial para entender por qué fotones de luz con frecuencias más altas transportan una mayor cantidad de energía, impactando fenómenos como la absorción y emisión de fotones en la interacción con la materia.

¿Todos los fotones son iguales?

Imaginarnos los fotones como bolitas nos puede llevar a problemas, incluso a preguntarnos si todos los fotones son iguales. Aunque los fotones comparten propiedades fundamentales, como su carga eléctrica neutra y su ausencia de masa, la singularidad y variabilidad inherentes a la naturaleza cuántica plantean una respuesta matizada. Un factor clave a considerar es la polarización.

Los fotones pueden tener diferentes estados de polarización, vertical, horizontal, circular, entre otros, lo que añade una dimensión de diversidad a sus propiedades. Además, la frecuencia de los fotones varía, lo cual significa que su energía también es diferente, como hemos visto por la ecuación de Planck.

En el contexto cuántico, la singularidad de cada fotón se manifiesta de manera más pronunciada. Por ejemplo, en el fenómeno del entrelazamiento cuántico, la correlación entre fotones entrelazados demuestra una conexión instantánea que desafía nuestra intuición clásica sobre la independencia de las partículas.

Fotones en la tecnología moderna

En la era moderna, los fotones desempeñan un papel crucial en diversas tecnologías que han transformado nuestra forma de comunicarnos, transmitir datos y explorar el espacio. Su participación en estos avances ha sido fundamental para impulsar la eficiencia y la velocidad en numerosos aspectos de nuestra vida cotidiana.

Fibra óptica. La fibra óptica, una tecnología esencial en las redes de comunicación, utiliza fotones para transmitir información a través de hilos de vidrio o plástico. En lugar de depender de señales eléctricas, las señales de luz (fotones) viajan a través de estas fibras a velocidades cercanas a la velocidad de la luz. Esta transmisión de datos con fotones permite un ancho de banda significativamente mayor y una menor pérdida de señal en comparación con los métodos tradicionales.

Comunicación vía satélite. En la comunicación por satélite, los fotones también desempeñan un papel esencial. Los sistemas de comunicación vía satélite utilizan fotones para transmitir señales desde la Tierra hasta satélites en órbita y viceversa. La eficiencia y velocidad de esta comunicación se deben en gran medida a la capacidad de los fotones de viajar distancias astronómicas en tiempos increíblemente cortos.

Imágenes médicas. En el ámbito de la medicina, los fotones son cruciales en tecnologías de imágenes médicas como la resonancia magnética (RM) y la tomografía por emisión de positrones (PET). La RM utiliza fotones para generar imágenes detalladas de tejidos internos basadas en la respuesta de los átomos al campo magnético. Por otro lado, la PET utiliza fotones para crear imágenes tridimensionales de procesos metabólicos en el cuerpo.

Energía solar. Otra aplicación importante se encuentra en la generación de energía solar, donde los fotones provenientes del sol son capturados por celdas solares, generando electricidad de manera sostenible. La capacidad de los fotones para liberar electrones al interactuar con materiales semiconductores forma la base de esta tecnología limpia y renovable.

____________
Fuente:

Entradas que pueden interesarte

Sin comentarios

LO MÁS VISTO

COP30: NUEVA OPORTUNIDAD PARA UN MUNDO EN CRISIS

Las naciones y sus gobiernos tienen una nueva oportunidad para comprometerse efectivamente a la adopción de medidas ya no paliativas, sino integrales que propicien condiciones para una efectiva transición energética, una cooperación internacional justa  Mario Patrón jornada.com.mx 13/11/2025 El pasado lunes 10 de noviembre dio inicio la 30 Conferencia de Naciones Unidas sobre Cambio Climático (COP30) en la ciudad de Belém, Brasil, con la presencia de representantes de más de 190 países. Como ocurre en cada edición, la mirada del mundo –especialmente de activistas climáticos y defensores del territorio– se enfoca en esta reunión diplomática que año con año despierta expectativas que poco se traducen en resultados. Esta edición número 30 se lleva a cabo en un panorama internacional complejizado por las posturas de diversos líderes mundiales, principalmente Donald Trump, quienes no sólo han dado la espalda a los compromisos medioambientales previamente asumidos por sus naciones, sino ...

INQUIETUD EN EL CARIBE

EL CARIBE SE ENFRENTA A DOS OPCIONES: UNIRSE AL INTENTO DE LOS ESTADOS UNIDOS DE INTIMIDAR A VENEZUELA O CONSTRUIR SU PROPIA SOBERANÍA Vijay Prashad elviejotopo.com 2 diciembre, 2025  El presidente de los Estados Unidos, Donald Trump, ha autorizado la entrada del USS Gerald R. Ford en el Caribe. Ahora se encuentra al norte de Puerto Rico, uniéndose al USS Iwo Jima y a otros activos de la Armada de los Estados Unidos para amenazar a Venezuela con un ataque. La tensión es alta en el Caribe, con diversas teorías sobre la posibilidad de lo que parece ser un asalto inevitable por parte de los Estados Unidos y sobre la catástrofe social que tal ataque ocasionaría. La CARICOM, el organismo regional de los países del Caribe, emitió un comunicado en el que afirmaba su opinión de que la región debe ser una “zona de paz” y que las disputas deben resolverse de forma pacífica. Diez exjefes de Gobierno de los Estados del Caribe publicaron una carta en la que exigían que “nuestra región n...

EMANCIPACIÓN N° 1015

LEER REVISTA N° 1015 DIRECTAMENTE Leer en Línea:  https://n9.cl/iht3a5 DESCARGAR REVISTA 1015 :  https://n9.cl/pi0mf VISITE BIBLIOTECA EMANCIPACIÓN LEER Y COPIAR EN LÍNEA DIRECTAMENTE: https://bibliotecaemancipacion.blogspot.com/ DESCARGUE 25 LIBROS EN PDF CON CADA ENTREGA HACIENDO CLIC EN CADA TÍTULO ANTES QUE PIERDA EL ENLACE NO OLVIDE DESCOMPRIMIR LOS ARCHIVOS LIBROS  14476  A  14500  14476 El Rostro Del ‘Estado Profundo’ Y Blackrock. Salazar Pérez, Robinson. Emancipación. Noviembre 15 de 2025 14477 El Tercer Ayudante. Símonov, Konstantin M. Emancipación. Noviembre 15 de 2025 14478 Pietri. Grin, Elmar. Emancipación. Noviembre 15 de 2025 14479 El Peso De Los Caídos. Platonov, Andréi. Emancipación. Noviembre 15 de 2025 14480 Los Cuchillos. Petróvich Katáiev, Valentin. Emancipación. Noviembre 15 de 2025 14481 Por Todo Lo Grande. Ilf, Iliá Y Petrov, Evgueni. Emancipación. Noviembre 15 de 2025 14482 Un Conocido. Karaváieva, Ana Alexándrovna. Emancipació...

EMANCIPACIÓN N° 1016

LEER REVISTA N° 1016 DIRECTAMENTE Leer en Línea :  https://n9.cl/qcq56 *** DESCARGAR REVISTA 1016:   https://n9.cl/axoh5 VISITE BIBLIOTECA EMANCIPACIÓN LEER Y COPIAR EN LÍNEA DIRECTAMENTE: https://bibliotecaemancipacion.blogspot.com/ DESCARGUE 25 LIBROS EN PDF CON CADA ENTREGA HACIENDO CLIC EN CADA TÍTULO ANTES QUE PIERDA EL ENLACE NO OLVIDE DESCOMPRIMIR LOS ARCHIVOS LIBROS 14501  A  14525 14501 En Peligro En El Mar. Hainsselin, Montague T. Emancipación. Noviembre 22 de 2025 14502 Vida De John Brown. Gold, Michael. Emancipación. Noviembre 22 de 2025 14503 En Torno Al Carácter Específico De La Literatura. Nikolaieva, Galina. Emancipación. Noviembre 22 de 2025 14504 El Método Orteguiano De Las Generaciones Y Las Leyes Objetivas Del Desarrollo Histórico. Federico Sánchez [Jorge Semprún Maura]. Emancipación. Noviembre 22 de 2025 14505 El Mundo Hundido. Coblentz, Stanton A. Emancipación. Noviembre 22 de 2025 14506 Papeles De Política 1999-2025. Pérez Pirela, Miguel Á...

EMANCIPACIÓN N° 1018

LEER REVISTA N° 1018 DIRECTAMENTE Leer en Línea :  https://n9.cl/967j0 *** DESCARGAR REVISTA 1018 :  https://n9.cl/85has *** VISITE BIBLIOTECA EMANCIPACIÓN LEER Y COPIAR EN LÍNEA DIRECTAMENTE: https://bibliotecaemancipacion.blogspot.com/ DESCARGUE 25 LIBROS EN PDF CON CADA ENTREGA HACIENDO CLIC EN CADA TÍTULO ANTES QUE PIERDA EL ENLACE NO OLVIDE DESCOMPRIMIR LOS ARCHIVOS LIBROS  14551  A  14575 14551 Un Siete Irreflexivo. Le Feuvre, Amy. Emancipación. Diciembre 6 de 2025 14552 Jack Pumpkinhead De Oz. Plumly Thompson, Ruth. Emancipación. Diciembre 6 de 2025 14553 El Maravilloso Invierno De Beth. Ames Taggart, Marion. Emancipación. Diciembre 6 de 2025 14554 Röschen, Jaköble Y Otros Pequeños Personajes. Schieber, Anna. Emancipación. Diciembre 6 de 2025 14555 Moufflou Y Otros Cuentos. Ouida. Emancipación. Diciembre 6 de 2025 14556 Una Hermana Prestada. Orne White, Eliza. Emancipación. Diciembre 6 de 2025 14557 Poemas De La Infancia. Field, Eugene. Emancipación...

ENTRADA DESTACADA

NO QUEREMOS UN NUEVO GUERNICA EN EL CARIBE

NO QUEREMOS UN NUEVO GUERNICA EN EL CARIBE

No queremos un nuevo Guernica en el Caribe porque queremos preservar la vida, la memoria, la ética …

Biblioteca Emancipación