Sponsor

Recent

CREAN CRONÓMETRO CUÁNTICO DE MAYOR PRECISIÓN

Crean un cronómetro cuántico que revolucionará las técnicas de imagen

Pablo Javier Piacente


Una nueva tecnología es capaz de medir fotones con mayor precisión y rapidez que todos los dispositivos actuales. La innovación cuántica marcará un antes y un después en el campo de las técnicas de imagen, con amplias aplicaciones en el terreno de la salud.

Investigadores de la Universidad de Colorado Boulder han desarrollado una especie de cronómetro cuántico, un instrumento óptico ultrarrápido especial llamado «lente temporal», que permite medir la presencia de fotones con una precisión cien veces mayor que los medios tradicionales de contar fotones individuales relacionados con tiempo (TCSPC).

Esta innovación traería mejoras significativas a las tecnologías de imagen, incluidas las relacionadas con la rama médica de la radiología, que permiten observar un área de un organismo que no es visible desde el exterior. La investigación se ha publicado recientemente en la revista Optica.

Según una nota de prensa, la nueva tecnología utiliza las técnicas TCSPC pero las lleva a un nuevo nivel: logra medir la llegada de fotones con una precisión que es más de 100 veces superior a la obtenida con las herramientas existentes en la actualidad. ¿Cómo funciona la técnica de base y cuál es el agregado del nuevo enfoque?

La tecnología de recuento de fotones individuales correlacionados en el tiempo (TCSPC) data de 1960, y ha revolucionado la forma en que logramos ver el mundo. Se aplican en ámbitos tan diversos como la confección de mapas geológicos o la obtención de imágenes médicas, vitales por ejemplo para obtener diagnósticos certeros de enfermedades como el cáncer o las patologías neurológicas.

Cada fotón al detalle

Básicamente, se trata de iluminar con una luz láser una muestra determinada, como por ejemplo proteínas individuales o un área geológica a estudiar, para luego registrar y medir los fotones que rebotan sobre el objeto analizado. Una mayor precisión en el registro y recuento de fotones permitirá obtener más características del objeto y definirlo mejor.

Los fotones son pequeños paquetes de energía que componen la luz: al analizarlos individualmente, es posible acercarse a características específicas de un objeto que se «pierden de vista» cuando lo vemos en su totalidad. En otras palabras, nos permiten «descomponer» un elemento a estudiar y acercarnos a detalles de su estructura que no se aprecian en una visualización integrada.

Sin embargo, las técnicas TCSPC convencionales tienen una limitación: no poseen la precisión necesaria para distinguir a dos fotones cuando rebotan prácticamente al mismo tiempo o lo hacen a velocidades extremas. Aquí radica el gran avance del nuevo enfoque: al utilizar una tecnología cuántica denominada «lente del tiempo», el nuevo dispositivo puede superar esta limitación.

¿Cómo lo hace? Funciona como un microscopio, pero en vez de amplificar un objeto lo hace con la separación temporal existente entre los fotones. De esta manera, el espacio de tiempo que existe entre un fotón y otro se puede agrandar, haciendo más sencilla su identificación individual y mejorando en consecuencia la precisión de un análisis.

Evitar errores

Las diferencias más sutiles en el «rebote» de los fotones sobre un objeto y la imposibilidad de diferenciarlos no es menor, ya que puede repercutir en el resultado final de la evaluación que se está realizando sobre el elemento en cuestión. Un mínimo detalle perdido puede derivar en un diagnóstico médico confuso a partir de imágenes de un órgano que no presentan la exactitud necesaria o de moléculas que no llegan a distinguirse.

De acuerdo a los científicos, el avance plantea un nuevo campo de acción y amplias aplicaciones en áreas en las cuales se requieren imágenes de máxima precisión, como en la radiología, los análisis químicos o los estudios geográficos, entre muchos otros ejemplos.

________________
Referencia

Time-magnified photon counting with 550-fs resolution. Bowen Li, Jan Bartos, Yijun Xie and Shu-Wei Huang. Optica (2021).DOI: https://doi.org/10.1364/OPTICA.420816

Foto: imagen de una calle de una ciudad obtenida con la tecnología TCSPC. Con la nueva herramienta cuántica, la precisión de las imágenes aumenta considerablemente. 

Crédito: Daniel L. Lu / Wikimedia Commons.
_____________
Fuente:

Entradas que pueden interesarte

Sin comentarios

LO MÁS VISTO

EXPANSIÓN DEL GENOCIDIO EN PLENA DECADENCIA IMPERIAL

“Oficialmente, EEUU financia el 15% del presupuesto de Defensa de Israel y envía el 70% del armamento que utilizan sus fuerzas militares, incluida tecnología de punta” Por Narciso Isa Conde 4 de octubre de 2024 La prensa mundial anuncia la nueva escalada de la guerra de agresión israelí con el inicio de la invasión al Líbano, la agresión a Yemen y la inminente agresión a Irán; utilizando el mismo patrón genocida de Gaza, es decir, ejecutando bombardeos indiscriminados a la población civil y asesinatos selectivos de los líderes de la resistencia palestina. Según la agencia Wafa, al menos 41,467 civiles palestinos murieron y 95,921 resultaron heridos, desde el ataque de Hamás contra Israel, es decir, en tan sólo un año de guerra. Más que en Ucrania Mueren centenares en el Sur del Líbano y los heridos pasan de 2000, entre ellos decenas niños y mujeres. La apertura gradual de nuevos frentes de guerra por parte de Israel (Gaza, Líbano, Cisjordania, Yemen, Irán, etc.) corresponde al viejo ob

LA ÚLTIMA REVOLUCIÓN TECNOLÓGICA: LA 'ORBITRÓNICA' HARÁ TODO MÁS RÁPIDO Y EFICIENTE

¿Qué es la 'orbitrónica'? Carga, espín y, ahora, momento angular. Electrones que rozan la ciencia ficción. Eugenio M. Fernández Aguilar, Físico, escritor y divulgador científico. Director de Muy Interesante Digital 03.10.2024 La orbitrónica es una rama emergente de la física que se centra en el uso del momento angular orbital de los electrones para crear nuevas formas de procesar y almacenar información. A diferencia de la electrónica convencional, que depende de la carga de los electrones, o la espintrónica, que utiliza su espín, la orbitrónica se centra en el comportamiento de los electrones en sus órbitas alrededor del núcleo, lo que promete mejorar significativamente la eficiencia energética y la velocidad de los dispositivos electrónicos. La orbitrónica ha empezado a posicionarse como una tecnología clave para el futuro. algo que muestre los fundamentos de la orbitrónica, basada en el momento angular de los electrones. Fuente: Leonardo.Ai / Eugenio Fdz. Llama la atención

LAS LUNAS DE URANO PODRÍAN ALBERGAR VIDA Y UNA MISIÓN ESPACIAL SERÍA CAPAZ DE CONFIRMARLO

Serían organismos que se sustentan mediante vías metabólicas y químicas similares a las empleadas por la vida presente en la profundidad de los océanos de la Tierra El planeta Urano y sus lunas. / Créditos: NASA/Johns Hopkins APL/Mike Yakovlev. Pablo Javier Piacente 02 OCT 2024  Algunas de las lunas de Urano podrían ser capaces de contener alguna forma de vida: los científicos creen que lo más emocionante es que estos satélites podrían contar con océanos subsuperficiales aún en la actualidad. Aunque se trata de una idea compleja en este momento, enviar una nave espacial a estas lejanas lunas podría revelar pistas sobre su habitabilidad y los mecanismos detrás de la formación y evolución de estos extraños mundos oceánicos. Una misión espacial dirigida hacia los confines del Sistema Solar, en concreto orientada a Urano y sus lunas, lograría confirmar la existencia de océanos líquidos internos y composiciones químicas que podrían ser favorables para la vida en los satélites del gigante he

ENTRADA DESTACADA

ISRAEL, EU Y LA OTAN, UN AÑO DE GENOCIDIO E IGNOMINIA

ISRAEL, EU Y LA OTAN, UN AÑO DE GENOCIDIO E IGNOMINIA

Hace un año, el gobierno ultraderechista de Benjamín Netanyahu en Israel, tomó como excusa el atque…

Biblioteca Emancipación